Dasatinib Sandoz

Dasatinib Sandoz Mechanism of Action

dasatinib

Manufacturer:

Sandoz

Distributor:

Zuellig Pharma
Full Prescribing Info
Action
Pharmacotherapeutic group: Antineoplastic agents, protein kinase inhibitors. ATC code: L01EA02.
Pharmacology: Pharmacodynamics: Dasatinib inhibits the activity of the BCR-ABL kinase and SRC family kinases along with a number of other selected oncogenic kinases including c-KIT, ephrin (EPH) receptor kinases, and PDGFβ receptor. Dasatinib is a potent, subnanomolar inhibitor of the BCR-ABL kinase with potency at concentration of 0.6-0.8 nM. It binds to both the inactive and active conformations of the BCR-ABL enzyme.
Mechanism of action: In vitro, dasatinib is active in leukaemic cell lines representing variants of imatinib-sensitive and resistant disease. These non-clinical studies show that dasatinib can overcome imatinib resistance resulting from BCR-ABL overexpression, BCR-ABL kinase domain mutations, activation of alternate signalling pathways involving the SRC family kinases (LYN, HCK), and multidrug resistance gene overexpression. Additionally, dasatinib inhibits SRC family kinases at subnanomolar concentrations.
Pharmacokinetics: The pharmacokinetics of dasatinib were evaluated in 229 adult healthy subjects and in 84 patients.
Absorption: Dasatinib is rapidly absorbed in patients following oral administration, with peak concentrations between 0.5-3 hours. Following oral administration, the increase in the mean exposure (AUCτ) is approximately proportional to the dose increment across doses ranging from 25 mg to 120 mg twice daily. The overall mean terminal half-life of dasatinib is approximately 5-6 hours in patients.
Data from healthy subjects administered a single, 100 mg dose of dasatinib 30 minutes following a high-fat meal indicated a 14% increase in the mean AUC of dasatinib. A low-fat meal 30 minutes prior to dasatinib resulted in a 21% increase in the mean AUC of dasatinib. The observed food effects do not represent clinically relevant changes in exposure.
Distribution: In patients, dasatinib has a large apparent volume of distribution (2,505 l) suggesting that the medicinal product is extensively distributed in the extravascular space. At clinically relevant concentrations of dasatinib, binding to plasma proteins was approximately 96% on the basis of in vitro experiments.
Biotransformation: Dasatinib is extensively metabolised in humans with multiple enzymes involved in the generation of the metabolites. In healthy subjects administered 100 mg of [14C]-labelled dasatinib, unchanged dasatinib represented 29% of circulating radioactivity in plasma. Plasma concentration and measured in vitro activity indicate that metabolites of dasatinib are unlikely to play a major role in the observed pharmacology of the product. CYP3A4 is a major enzyme responsible for the metabolism of dasatinib.
Elimination: The mean terminal half-life of dasatinib is 3 hours to 5 hours. The mean apparent oral clearance is 363.8 L/hr (CV% 81.3%).
Elimination is predominantly in the faeces, mostly as metabolites. Following a single oral dose of [14C]-labelled dasatinib, approximately 89% of the dose was eliminated within 10 days, with 4% and 85% of the radioactivity recovered in the urine and faeces, respectively. Unchanged dasatinib accounted for 0.1% and 19% of the dose in urine and faeces, respectively, with the remainder of the dose as metabolites.
Hepatic and renal impairment: The effect of hepatic impairment on the single-dose pharmacokinetics of dasatinib was assessed in 8 moderately hepatic-impaired subjects who received a 50 mg dose and 5 severely hepatic-impaired subjects who received a 20 mg dose compared to matched healthy subjects who received a 70 mg dose of dasatinib. The mean Cmax and AUC of dasatinib adjusted for the 70 mg dose were decreased by 47% and 8%, respectively, in subjects with moderate hepatic impairment compared to subjects with normal hepatic function. In severely hepatic-impaired subjects, the mean Cmax and AUC adjusted for the 70 mg dose were decreased by 43% and 28%, respectively, compared to subjects with normal hepatic function (see Dosage & Administration and Precautions).
Dasatinib and its metabolites are minimally excreted via the kidney.
Toxicology: Preclinical safety data: The non-clinical safety profile of dasatinib was assessed in a battery of in vitro and in vivo studies in mice, rats, monkeys, and rabbits.
The primary toxicities occurred in the gastrointestinal, haematopoietic, and lymphoid systems. Gastrointestinal toxicity was dose-limiting in rats and monkeys, as the intestine was a consistent target organ. In rats, minimal to mild decreases in erythrocyte parameters were accompanied by bone marrow changes; similar changes occurred in monkeys at a lower incidence. Lymphoid toxicity in rats consisted of lymphoid depletion of the lymph nodes, spleen, and thymus, and decreased lymphoid organ weights. Changes in the gastrointestinal, haematopoietic and lymphoid systems were reversible following cessation of treatment.
Renal changes in monkeys treated for up to 9 months were limited to an increase in background kidney mineralisation. Cutaneous haemorrhage was observed in an acute, single-dose oral study in monkeys but was not observed in repeat-dose studies in either monkeys or rats. In rats, dasatinib inhibited platelet aggregation in vitro and prolonged cuticle bleeding time in vivo, but did not invoke spontaneous haemorrhage.
Dasatinib activity in vitro in hERG and Purkinje fiber assays suggested a potential for prolongation of cardiac ventricular repolarisation (QT interval). However, in an in vivo single dose study in conscious telemetered monkeys, there were no changes in QT interval or ECG wave form.
Dasatinib was not mutagenic in in vitro bacterial cell assays (Ames test) and was not genotoxic in an in vivo rat micronucleus study. Dasatinib was clastogenic in vitro to dividing Chinese Hamster Ovary (CHO) cells.
Dasatinib did not affect male or female fertility in a conventional rat fertility and early embryonic development study, but induced embryolethality at dose levels approximating human clinical exposures. In embryofoetal development studies, dasatinib likewise induced embryolethality with associated decreases in litter size in rats, as well as foetal skeletal alterations in both rats and rabbits. These effects occurred at doses that did not produce maternal toxicity, indicating that dasatinib is a selective reproductive toxicant from implantation through the completion of organogenesis.
In mice, dasatinib induced immunosuppression, which was dose-related and effectively managed by dose reduction and/or changes in dosing schedule. Dasatinib had phototoxic potential in an in vitro neutral red uptake phototoxicity assay in mouse fibroblasts. Dasatinib was considered to be non-phototoxic in vivo after a single oral administration to female hairless mice at exposures up to 3-fold the human exposure following administration of the recommended therapeutic dose (based on AUC).
In a two-year carcinogenicity study, rats were administered oral doses of dasatinib at 0.3, 1, and 3 mg/kg/day. The highest dose resulted in a plasma exposure (AUC) level generally equivalent to the human exposure at the recommended range of starting doses from 100 mg to 140 mg daily. A statistically significant increase in the combined incidence of squamous cell carcinomas and papillomas in the uterus and cervix of high-dose females and of prostate adenoma in low-dose males was noted. The relevance of the findings from the rat carcinogenicity study for humans is not known.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in